Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Comput Biol Med ; 135: 104654, 2021 08.
Article in English | MEDLINE | ID: covidwho-1313022

ABSTRACT

COVID-19 is an infectious and pathogenic viral disease caused by SARS-CoV-2 that leads to septic shock, coagulation dysfunction, and acute respiratory distress syndrome. The spreading rate of SARS-CoV-2 is higher than MERS-CoV and SARS-CoV. The receptor-binding domain (RBD) of the Spike-protein (S-protein) interacts with the human cells through the host angiotensin-converting enzyme 2 (ACE2) receptor. However, the molecular mechanism of pathological mutations of S-protein is still unclear. In this perspective, we investigated the impact of mutations in the S-protein and their interaction with the ACE2 receptor for SAR-CoV-2 viral infection. We examined the stability of pathological nonsynonymous mutations in the S-protein, and the binding behavior of the ACE2 receptor with the S-protein upon nonsynonymous mutations using the molecular docking and MM_GBSA approaches. Using the extensive bioinformatics pipeline, we screened the destabilizing (L8V, L8W, L18F, Y145H, M153T, F157S, G476S, L611F, A879S, C1247F, and C1254F) and stabilizing (H49Y, S50L, N501Y, D614G, A845V, and P1143L) nonsynonymous mutations in the S-protein. The docking and binding free energy (ddG) scores revealed that the stabilizing nonsynonymous mutations show increased interaction between the S-protein and the ACE2 receptor compared to native and destabilizing S-proteins and that they may have been responsible for the virulent high level. Further, the molecular dynamics simulation (MDS) approach reveals the structural transition of mutants (N501Y and D614G) S-protein. These insights might help researchers to understand the pathological mechanisms of the S-protein and provide clues regarding mutations in viral infection and disease propagation. Further, it helps researchers to develop an efficient treatment approach against this SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Peptidyl-Dipeptidase A/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
2.
Front Mol Biosci ; 8: 645216, 2021.
Article in English | MEDLINE | ID: covidwho-1202257

ABSTRACT

The number of confirmed COVID-19 cases is rapidly increasing with no direct treatment for the disease. Few repurposed drugs, such as Remdesivir, Chloroquine, Hydroxychloroquine, Lopinavir, and Ritonavir, are being tested against SARS-CoV-2. Remdesivir is the drug of choice for Ebola virus disease and has been authorized for emergency use. This drug acts against SARS-CoV-2 by inhibiting the RNA-dependent-RNA-polymerase (RdRp) of SARS-CoV-2. RdRp of viruses is prone to mutations that confer drug resistance. A recent study by Pachetti et al. in 2020 identified the P323L mutation in the RdRp protein of SARS-CoV-2. In this study, we aimed to determine the potency of lead compounds similar to Remdesivir, which can be used as an alternative when variants of SARS-CoV-2 develop resistance due to RdRp mutations. The initial screening yielded 704 compounds that were 90% similar to the control drug, Remdesivir. On further evaluation through drugability and antiviral inhibition percentage analyses, we shortlisted 32 and seven compounds, respectively. These seven compounds were further analyzed for their molecular interactions, which revealed that all seven compounds interacted with RdRp with higher affinity than Remdesivir under native conditions. However, three compounds failed to interact with the mutant protein with higher affinity than Remdesivir. Dynamic cross-correlation matrix (DCCM) and vector field collective motions analyses were performed to identify the precise movements of docked complexes' residues. Furthermore, the compound SCHEMBL20144212 showed a high affinity for native and mutant proteins and might provide an alternative against SARS-CoV-2 variants that might confer resistance to Remdesivir. Further validations by in vitro and in vivo studies are needed to confirm the efficacy of our lead compounds for their inhibition against SARS-CoV-2.

3.
Int J Pept Res Ther ; 27(3): 1837-1847, 2021.
Article in English | MEDLINE | ID: covidwho-1173963

ABSTRACT

Peptides are promising antagonists against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). To expedite drug discovery, a computational approach is widely employed for the initial screening of anti-SARS-CoV-2 candidates. This study aimed to investigate the potential of peptides from quinoa seed proteins as multi-target antagonists against SARS-CoV-2 spike glycoprotein receptor-binding domain, main protease, and papain-like protease. Five quinoa proteins were hydrolyzed in silico by papain and subtilisin. Among the 1465 peptides generated, seven could interact stably with the key binding residues and catalytic residues of the viral targets, mainly via hydrogen bonds and hydrophobic interactions. The seven peptides were comparable or superior to previously reported anti-SARS-CoV-2 peptides based on docking scores. Key residues in the seven peptides contributing to binding to viral targets were determined by computational alanine scanning. The seven peptides were predicted in silico to be non-toxic and non-allergenic. The peptides ranged between 546.66 and 3974.87 g/mol in molecular mass, besides exhibiting basic and cationic properties (isoelectric points: 8.26-12.10; net charges: 0.1-4.0). Among the seven peptides, VEDKGMMHQQRMMEKAMNIPRMCGTMQRKCRMS was found to bind the largest number of key residues on the targets. In conclusion, seven putative non-toxic, non-allergenic, multi-target anti-SARS-CoV-2 peptides were identified from quinoa seed proteins. The in vitro and in vivo efficacies of the seven peptides against SARS-CoV-2 deserve attention in future bench-top testing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10214-y.

4.
3 Biotech ; 11(4): 198, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1157008

ABSTRACT

Coronavirus disease (COVID-19) pandemic is instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of March 13, 2021, more than 118.9 million cases were infected with COVID-19 worldwide. SARS-CoV-2 is a positive-sense single-stranded RNA beta-CoV. Most COVID-19 infected individuals recover within 1-3 weeks. Nevertheless, approximately 5% of patients develop acute respiratory distress syndrome and other systemic complications, leading to death. Structural genetic analyses of SARS-CoV-2 have shown genomic resemblances but a low evolutionary correlation to SARS-CoV-1 responsible for the 2002-2004 outbreak. The S glycoprotein is critical for cell adhesion and the entrance of the virus into the host. The process of cell entry uses the cellular receptor named angiotensin-converting enzyme 2. Recent evidence proposed that the CD147 as a SARS-CoV-2's potential receptor. The viral genome is mainly held by two non-structural proteins (NSPs), ORF1a and ORF1ab, along with structural proteins. Although NSPs are conserved among the ßCoVs, mutations in NSP2 and NSP3 may play critical roles in transmitting the virus and cell tropism. To date, no specific/targeted anti-viral treatments exist. Notably, more than 50 COVID-19 candidate vaccines in clinical trials, and a few being administered. Preventive precautions are the primary strategy to limit the viral load transmission and spread, emphasizing the urgent need for developing significant drug targets and vaccines against COVID-19. This review provides a cumulative overview of the genomic structure, transmission, phylogeny of SARS-CoV-2 from Indian clusters, treatment options, updated discoveries, and future standpoints for COVID-19. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02749-0.

5.
Front Med (Lausanne) ; 7: 250, 2020.
Article in English | MEDLINE | ID: covidwho-853941

ABSTRACT

The coronavirus disease (COVID-19) pandemic, which originated in the city of Wuhan, China, has quickly spread to various countries, with many cases having been reported worldwide. As of May 8th, 2020, in India, 56,342 positive cases have been reported. India, with a population of more than 1.34 billion-the second largest population in the world-will have difficulty in controlling the transmission of severe acute respiratory syndrome coronavirus 2 among its population. Multiple strategies would be highly necessary to handle the current outbreak; these include computational modeling, statistical tools, and quantitative analyses to control the spread as well as the rapid development of a new treatment. The Ministry of Health and Family Welfare of India has raised awareness about the recent outbreak and has taken necessary actions to control the spread of COVID-19. The central and state governments are taking several measures and formulating several wartime protocols to achieve this goal. Moreover, the Indian government implemented a 55-days lockdown throughout the country that started on March 25th, 2020, to reduce the transmission of the virus. This outbreak is inextricably linked to the economy of the nation, as it has dramatically impeded industrial sectors because people worldwide are currently cautious about engaging in business in the affected regions.

SELECTION OF CITATIONS
SEARCH DETAIL